邓兴旺教授连发PNAS等两篇文章获新技术成果

【字体: 时间:2013年10月17日 来源:生物通

编辑推荐:

  作为全球知名的华人科学家,邓兴旺教授今年上半年新当选为美国国家科学院院士,近期邓兴旺教授研究组又接连发表PNAS等杂志论文,取得了拟南芥UV-B光信号转导,以及水稻高密度SNP基因分型研究新成果。

  

生物通报道:作为全球知名的华人科学家,邓兴旺教授今年上半年新当选为美国国家科学院院士,同时其研究组也获得了不少重要的新成果,如去年年初他曾与清华大学施一公教授等共同解析了植物拟南芥感受紫外线B波段光受体UVR8的晶体结构。近期邓兴旺教授研究组又接连发表PNAS等杂志论文,取得了拟南芥UV-B光信号转导,以及水稻高密度SNP基因分型研究新成果。

第一篇文章:A High Density SNP Genotyping Array for Rice Biology and Molecular Breeding由邓兴旺教授,张启发教授等人合作完成,分析测评了一种高密度SNP基因分型芯片分析技术,指出这种技术未来将会在功能基因组研究和分子育种中发挥重要作用。

高密度单核苷酸多态性(SNP)分析对于遗传学家和分子育种学家来说十分重要,随着大量的基因组测序数据,以及精确SNP检测技术的积累发展,目前已经实现了水稻高质量高密度SNP芯片分析。

在这篇文章中,研究人员报道了一种高密度水稻SNP芯片分析及其应用的发展。他们通过筛选来自801种水稻品种重测序数据中超过1000万个SNP位点,利用Illumina的Infinium平台中一种称为RiceSNP50的芯片进行分析。这种芯片共有51,478个均匀分布的标记,其中68%存在于基因区域内。

实验结果表明芯片基因分型准确率高,应用方面广泛,比如可以用于高分辨率收集优质水稻品种核心种质。同时研究人员通过全基因组关联研究(GWAS)也准确识别出了一个特征QTL。此外,这一芯片也被成功地用于多种验证和特质分析过程。

这些研究结果表明RiceSNP50是一种精确高通量基因分型工具,未来将会在功能基因组研究和分子育种中发挥重要作用。

RiceSNP50 新型技术最新资料及报价>> >>

另外一篇文章则揭示了在拟南芥UV-B光形态建成中COP1蛋白行使正调控因子功能的生化机制。

COP1基因最早由邓兴旺教授在拟南芥中发现,并被鉴定为光形态建成的抑制因子。COP1蛋白在动植物中具有保守性,而依赖于不同的生物学事件又具有功能的多样性。在传统的由可见光诱导的光形态建成中,COP1具有 E3泛素连接酶活性,引起多个光形态建成促进因子的降解,从而抑制这一发育过程。而在新发现的UV-B诱导的光形态建成中,COP1是一个关键的正调控因子。

过去的研究发现COP1基因表达受到UV-B的调控(Huang et al., Plant Cell, 2012)。在此基础上,研究人员又进一步发现COP1的蛋白功能亦受到UV-B的调控,且根据不同的光信号形成不同的复合体。UV-B诱导形成的COP1新复合体包含UV-B光受体UVR8,将COP1的功能进行反转,对典型的光形态建成促进因子HY5的稳定性和活性具有促进作用,从而实现COP1在UV-B光形态建成中的正调控作用。

这项工作不仅解释了COP1在植物光信号转导中的多重功能,亦是阐明生物体内有限的蛋白质编码容量满足多样化的功能需求的又一力证。该项工作的发表引起了植物学领域的广泛关注,已获Plant Signaling & Behavior杂志邀请撰写相关评论。(生物通:万纹)

原文摘要:

A High Density SNP Genotyping Array for Rice Biology and Molecular Breeding

A high density single nucleotide polymorphism (SNP) array is critically important for geneticists and molecular breeders. With the accumulation of huge amounts of genomic resequencing data and available technologies for accurate SNP detection, it is possible to design high density and high quality rice SNP arrays. Here we report the development of a high density rice SNP array and its utility. SNP probes were designed by screening more than 10,000,000 SNP loci extracted from the re-sequencing data of 801 rice varieties and an array named RiceSNP50 was produced on the Illumina Infinium platform. The array contained 51,478 evenly distributed markers, 68% of which were within genic regions. Several hundred rice plants with parent/F1 relationships were used to generate a high quality cluster file for accurate SNP calling. Application tests showed that this array had high genotyping accuracy, and could be used for different objectives. For example, a core collection of elite rice varieties was clustered with fine resolution. Genome-wide association studies (GWAS) analysis correctly identified a characterized QTL. Further, this array was successfully used for variety verification and trait introgression. As an accurate high-throughput genotyping tool, RiceSNP50 will play an important role in both functional genomics studies and molecular breeding.

Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B

The evolutionarily conserved CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) is a RING and WD40 protein that functions as a substrate receptor of CULLIN4–DAMAGED DNA BINDING PROTEIN 1 (CUL4–DDB1)–based E3 ubiquitin ligases in both plants and animals. In Arabidopsis, COP1 is a central repressor of photomorphogenesis in the form of COP1–SUPPRESSOR OF PHYA (SPA) complex(es). CUL4–DDB1–COP1–SPA suppresses the photomorphogenic program by targeting the transcription factor ELONGATED HYPOCOTYL 5 for degradation. Intriguingly, under photomorphogenic UV-B light, COP1 reverses its repressive role and promotes photomorphogenesis. However, the mechanism by which COP1 is functionally switched is still obscure. Here, we demonstrate that UV-B triggers the physical and functional disassociation of the COP1–SPA core complex(es) from CUL4–DDB1 and the formation of a unique complex(es) containing the UV-B receptor UV RESISTANCE LOCUS 8 (UVR8). The establishment of this UV-B–dependent COP1 complex(es) is associated with its positive modulation of ELONGATED HYPOCOTYL 5 stability and activity, which sheds light on the mechanism of COP1’s promotive action in UV-B–induced photomorphogenesis.
 

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号